COMBINATORICA

Akadémiai Kiadó - Springer-Verlag

INTERSECTION THEOREMS IN PERMUTATION GROUPS

P. J. CAMERON, M. DEZA and P. FRANKL

Received April 14, 1987

The Hamming distance between two permutations of a finite set X is the number of elements of X on which they differ. In the first part of this paper, we consider bounds for the cardinality of a subset (or subgroup) of a permutation group P on X with prescribed distances between its elements. In the second part. We consider similar results for sets of s-tuples of permutations; the role of Hamming distance is played by the number of elements of X on which, for some i, the ith permutations of the two tuples differ.

1. In the symmetric group

Suppose that X is a finite set with |X|=n, and P is a permutation group on X. The Hamming metric is defined on P by

$$d(\pi, \varrho) = |\{x \in X : \pi(x) \neq \varrho(x)\}|$$

for π , $\varrho \in P$. Clearly, $n-d(\pi, \varrho)$ is the size of the intersection of π and ϱ , or more exactly, the number of places where π and ϱ coincide; in other words, the number of fixed points of $\pi^{-1}\varrho$. For a set R of permutations, let us define the type d(R) of R by

$$d(R) = \{d(\pi, \varrho) \colon \pi \varrho \in R, \ \pi \neq \varrho\}.$$

Note that, if R is a group, then

$$d(R) = \{d(1, \varrho): \varrho \in R, \varrho \neq 1\}.$$

For a fixed subset D of $\{2, 3, ..., n\}$, let m(n, D, P) denote the maximum size of a subset R of P satisfying $d(R) \subseteq D$. (Note that no two permutations have Hamming distance 1.) Analogously, $m_g(n, D, P)$ is the maximal size of a subgroup R of P with $d(R) \subseteq D$.

The function m(n, D, P) was first investigated (in special cases) in [6]; see [3] for a general upper bound for $m(n, D, S_n)$ in terms of n and |D|. For $m_g(n, D, P)$, the best general bound is the following theorem of Blichfeldt [1] (see also Kiyota [10]):

Theorem 1.1.

(1)
$$m_g(n, D, P) \leq \prod_{d \in D} d.$$

A group R satisfying equality in (1) is called a *sharp group*.

For some triples (n, D, P), it can be shown that $m(n, D, P) \leq \prod_{d \in D} d$. It is an interesting and seemingly difficult problem to decide exactly when this occurs. The simplest such case is the "packing case", when $D = \{n-t+1, n-t+2, ..., n\}$; that is, we require that no two permutations agree in t positions.

Proposition 1.2. Suppose that $D = \{n-t+1, ..., n\}$. Then

(2)
$$m(n, D, P) \leq \prod_{d \in D} d = n(n-1)...(n-t+1).$$

Proof. Suppose that $R \subseteq P$, $d(R) \subseteq D$. Then, for all distinct π , $\varrho \in R$, the sequences $(\pi(1), \pi(2), ..., \pi(t))$ and $(\varrho(1), \varrho(2), ..., \varrho(t))$ are distinct. Since the terms of such a sequence are distinct members of X, the number of such sequences is at most the right-hand side of (2).

A set realizing equality in (2) is called sharply t-transitive.

Another simple observation is the following.

Proposition 1.3. Suppose that $D_1, D_2 \subseteq \{2, 3, ..., n\}$. Then we have

(3)
$$m(n, D_1, P)m(n, D_2, P) \leq |P|m(n, D_1 \cap D_2, P).$$

Proof. Suppose that $R_i \subseteq P$ satisfies $d(R_i) \subseteq D_i$ for i=1, 2. We claim that for each $\pi \in P$, the equation $\pi = \varrho_1 \varrho_2$ has at most $m(n, D_1 \cap D_2, P)$ solutions with $\varrho_i \in R_i$ for i=1, 2. This clearly implies that $|R_1| |R_2| \leq |P| m(n, D_1 \cap D_2, P)$, and thus (3).

To prove the claim, observe that, if $\varrho_1^{(j)}\varrho_2^{(j)}=\pi$ for j=1,...,m, then

$$d(\varrho_1^{(j)}, \varrho_1^{(k)}) = d(\varrho_2^{(j)}, \varrho_2^{(k)}) \in D_1 \cap D_2$$

for all $j\neq k$; so $\varrho_1^{(1)},...,\varrho_1^{(m)}$ has type $D_1\cap D_2$.

Corollary 1.4. Suppose that P contains a sharply t-transitive set. Then we have

(4)
$$m(n, \{2, 3, ..., n-t\}, P) = |P|/n(n-1)...(n-t+1).$$

Equality holds, for example, for the stabilizer of t elements of X.

Remark. Corollary 1.4 clearly implies Proposition 1.2. In the other direction, Corollary 1.4 was used in [6] to show that

$$m(n, \{2, 3, ..., n-t\}, S_n) = (n-t)!$$

in the cases

- (a) t=1, all n;
- (b) t=2, n a prime power;
- (c) t=3, n=q+1, q a prime power.

(Sharply t-transitive groups are known in these cases.)

Conjecture 1.5 [6]. For $n \ge n_0(t)$, one has $m(n, \{2, 3, ..., n-t\}, S_n) = (n-t)!$.

Let us remark that to prove the conjecture in the case t=2 for any further value of n by using Corollary 1.4 would amount to proving the existence of a projective plane of non-prime-power order; a different method of proof will clearly be necessary in general!

In the case t=1, to use Corollary 1.4 it is necessary that P be transitive. However, many transitive groups don't contain sharply transitive subsets. Let us give an example where (4) fails (with t=1).

Example 1.6. Consider the permutation group $P \cong A_4$ of degree 6, on the cosets of a subgroup of order 2; P is generated by (1, 2)(3, 4) and (1, 3, 5)(2, 4, 6). The upper bound for $m(6, \{2, 3, 4, 5\}, P) = m(6, \{4\}, P)$ given by (4), were it applicable, would be 2; but the subgroup of P of order 4 has type $\{4\}$.

A necessary condition for a permutation group to contain a sharply transitive subset is given by the following theorem of O'Nan [11].

Theorem 1.7. Let P be a transitive permutation group on X, with |X|=n. Suppose that Y is another set on which P acts transitively, with |Y|=m, such that every irreducible constituent of the permutation character of P on Y is contained in its permutation character on X. If P (on X) contains a sharply transitive subset, then m divides n.

In Example 1.6, we can take Y to be the set of four points affording the usual representation of A_4 (the cosets of a subgroup of order 3).

There is an obvious analogy between Conjecture 1.5 and the Erdős—Ko—Rado theorem [9], which states that, if \mathcal{J} is a family of k-element sets of X satisfying

$$|F \cap F'| \ge t$$
 for all $F, F' \in \mathcal{J}$, then $|\mathcal{J}| \le \binom{n-t}{k-t}$ holds provided that $n \ge n_0(k, t)$.

For
$$Y \subseteq X$$
, $|Y| = r$, define

$$\mathscr{G}(Y) = \{F \subseteq X : |F| = k, F \cap Y \neq \emptyset\}.$$

Then no r+1 sets of $\mathscr{G}(Y)$ can be pairwise disjoint. An old theorem of Erdős [8] states that, for $n \ge n_0(k, r)$, every family \mathscr{J} of k-element sets satisfying $|\mathscr{J}| > |\mathscr{G}(Y)|$ contains r+1 pairwise disjoint members. This, too, has an analogue for permutations:

Theorem 1.8. Suppose that P contains a sharply t-transitive subset. Let $R \subseteq P$ have the property that, among any r+1 members of R, two coincide in at least t places. Then we have

(5)
$$|R| \leq \min r, \ n(n-1)...(n-t+1)P/n(n-1)...(n-t+1).$$

Proof. Let $S \subseteq P$ be sharply t-transitive. In the same way as in the proof of Proposition 1.3, no element of P can be represented in more than min $\{r, |S|\}$ ways as a product $\varrho \sigma$ with $\varrho \in R$, $\sigma \in S$.

Corollary 1.9. Suppose that $R \subseteq S_n$ and R contains no r+1 pairwise disjoint permutations. Then we have $|R| \le r(n-1)!$.

Let us remark that the bound (5) is best possible. More generally, any *t*-transitive group P contains a set R satisfying the hypothesis of Theorem 1.8, whose cardinality attains the bound (5). This is trivial if $r \ge n(n-1)...(n-t+1)$; otherwise, choose (r+1) *t*-tuples of distinct elements, say $(x_1^{(t)}, ..., x_t^{(t)})$, i=0, ..., r, and set

$$R = \{\pi \in P: \exists i \in \{1, ..., r\}$$

with

$$\pi(x_j^{(0)}) = x_j^{(i)}$$
 for $j = 1, ..., t$.

We conjecture that Theorem 1.8 is valid for $P=S_n$ if the hypothesis on the existence of a sharply t-transitive subset is replaced by the hypothesis $n \ge n_0(r, t)$. Furthermore, the above example should be the only extremal one.

2. In powers of the symmetric group

A permutation $\pi \in S_n$ can be regarded as an *n*-element subset $A(\pi) = \{(i, \pi(i)): i \in X\}$ of X^2 ; it is transversal both to the rows and to the columns of X^2 . Similarly, if

$$\bar{\pi} = (\pi_1, ..., \pi_s) \in S_n \times ... \times S_n$$
 (s factors),

we may regard $\bar{\pi}$ as a subset

$$A(\bar{\pi}) = \{(i, \pi_1(i), ..., \pi_s(i)) : i \in X\}$$

of X^{s-1} , which is a transversal to each "coordinate hyperplane"

$$C(j, x) = \{(x_0, ..., x_s): x_j = x\}.$$

The $(n!)^s$ sets $A(\bar{\pi})$ are called diagonals; a subset of a diagonal is called a partial diagonal or injective set.

One can define the distance between $\bar{\pi}$, $\bar{\varrho} \in S_n^s$ by

$$d(\bar{\pi},\bar{\varrho})=n-|A(\bar{\pi})\cap A(\bar{\varrho})|.$$

Note that $|A(\bar{n}) \cap A(\bar{\varrho})|$ is equal to the number of common fixed points of the permutations $\pi_1^{-1}\varrho_1, ..., \pi_s^{-1}\varrho_s$. The type d(R) of a subset R of a group $P \leq S_n^s$, and the functions m(n, D, P) and $m_g(n, D, P)$, are defined by analogy with the case s=1. The value of s should be clear from the representation of $P \leq S_n^s$.

Before considering these functions, there is one point that must be discussed. The identification of a diagonal of X^{s+1} with an s-tuple of permutations depend on the choice of a distinguished coordinate of X^{s+1} (the 0th coordinate, in our definition). A different choice obviously doesn't affect distances; but it can convert a subgroup of S_n^s into a subset which is not a group. We call this process translation. More precisely, for $\bar{\pi} \in S_n^s$ and $1 \le j \le s$, we define $T_j(\bar{\pi})$ to be the element $(\varrho_1, ..., \varrho_s)$ for which

$$A(\bar{\pi}) = \{(\varrho_1(i), \ldots, \varrho_j(i), i, \varrho_{j+1}(i), \ldots) : i \in X\}.$$

In the case s=1, the unique translation T_1 replaces a permutation by its inverse, since $\{(i, \pi(i): i \in X\} = \{(\pi^{-1}(i), i): i \in X\}$. So a translate of a subgroup is necessarily a subgroup. We give conditions for this to hold in general. Note that, if $T_1(\bar{\pi}) = \bar{\varrho}$, then $\varrho_1 = \pi_1^{-1}$ and $\varrho_k = \pi_k \pi_1^{-1}$ for k>1.

Proposition 2.1. Let G be a subgroup of S_n^s , and let $\varphi_1, ..., \varphi_s$ be the projections of G onto the factors of S_n^s . Then the following are equivalent:

(i) $T_1(G)$ is also a subgroup of S_n^s ;

(ii) G is normalized by diag $(\varphi_1(G))$, where diag $(P) = \{(\pi, \pi, ..., \pi): \pi \in P\}$.

Proof. Suppose that (i) holds. Let ψ_i be the function mapping an element $\bar{\pi} \in G$ to the i^{th} projection of $T_1(\bar{\pi})$, and * the group operation on G defined by

$$T_1(\bar{\pi} * \bar{\varrho}) = T_1(\bar{\pi})T_1(\bar{\varrho})$$
 for $\bar{\pi}, \bar{\varrho} \in G$.

We have $\psi_1(\bar{\pi}) = \varphi_1(\bar{\pi})^{-1}$ and

$$\psi_i(\bar{\pi}) = \varphi_i(\bar{\pi})\varphi_1(\bar{\pi})^{-1}$$
 for $i \ge 2$.

Now $\psi_1, ..., \psi_s$ are homomorphisms of (G, *). So

$$\begin{split} \varphi_1(\bar{\pi}^{-1}\bar{\varrho}^{-1}) &= \varphi_1(\bar{\pi})^{-1}\varphi_1(\bar{\varrho})^{-1} \\ &= \psi_1(\bar{\pi})\psi_1(\bar{\varrho}) \\ &= \psi_1(\bar{\pi}*\bar{\varrho}) \\ &= \varphi_1(\bar{\pi}*\bar{\varrho})^{-1}, \end{split}$$

SO

(6)
$$\varphi_1(\bar{\pi}*\bar{\varrho}) = \varphi_1(\bar{\varrho}\cdot\bar{\pi}).$$

Also, for i > 1,

$$\begin{split} \varphi_i(\bar{\pi}*\bar{\varrho})\varphi_1(\bar{\varrho}\bar{\pi})^{-1} &= \varphi_i(\bar{\pi}*\bar{\varrho})\varphi_1(\bar{\pi}*\bar{\varrho})^{-1} \\ &= \psi_i(\bar{\pi}*\bar{\varrho}) \\ &= \psi_i(\bar{\pi})\psi_i(\bar{\varrho}) \\ &= \varphi_i(\bar{\pi})\varphi_1(\pi)^{-1}\varphi_i(\bar{\varrho})\varphi_1(\varrho)^{-1}, \end{split}$$

SO

(7)
$$\varphi_i(\bar{\pi}*\bar{\varrho}) = \varphi_i(\bar{\pi})\varphi_1(\bar{\pi})^{-1}\varphi_i(\bar{\varrho})\varphi_1(\bar{\pi}).$$

By (6), this holds also for i=1. Now $\varphi_i(\bar{\pi}^{-1}\cdot(\bar{\pi}*\bar{\varrho}))=\varphi_i(\varrho)^{\varphi_i(\bar{\pi})}$, so the conjugate of $\bar{\varrho}$ by $\varphi_1(\bar{\pi})$ is $\bar{\pi}^{-1}\cdot(\bar{\pi}*\bar{\varrho})$, which is also in G, proving (ii).

Conversely, if (ii) holds, define $\bar{\pi} * \bar{\varrho} = \bar{\pi} \cdot \bar{\varrho}^{\varphi_1(\bar{\pi})}$. Then $\psi_1, ..., \psi_s$ are homomorphisms of (G, *); the intersection of their kernels is the identity, so (G, *) is a group, isomorphic to a subgroup of the direct product of its projections.

In view of this, we could define $m_G(n, D, P) = \max\{|R|: d(R) \subseteq D, T_i(R) \le P\}$ for all i. Then, clearly, $m_G(n, D, P) \le m_g(n, D, P) \le m(n, D, P)$. However, we have no further information about the function m_G .

Problem 2.2. Suppose that R is a subgroup of S_n^s of type D. Is it necessarily the case that

$$|R| \le \left(\prod_{d \in D} d \right)^{s}?$$

In the case s=1, (8) is simply Blichfeldt's bound (1).

For D=n-t+1, ..., n, one can prove (8) in the same way as (2). Sets realizing equality are again called *sharply t-transitive*. Proposition 1.3, Corollary 1.4, and Theorem 1.8 extend to general s with essentially the same proofs.

The proof of (1) actually shows that $m_g(n, D, P)$ divides $\prod_{d \in D} d$. This is not true in general for $s \ge 2$:

Example 2.3. Let G be a group of order n-1, and let φ_1 , φ_2 be two embeddings of G into S_n so that $\varphi_i(G)$ fixes i and acts regularly on the other points for i=1, 2. Now $P = \{(\varphi_1(\pi), \varphi_2(\pi)): \pi \in G\}$ has type $\{n\}$, but $|P| = n - 1 \nmid n^2$.

We can prove (8) only under a very restrictive hypothesis, by following Kiyota's proof of (1).

Theorem 2.4. Suppose that $R \leq S_n^s$ and R has type D. Suppose further that, for every $(\pi_1, ..., \pi_s) \in R$, there is some i $(1 \leq i \leq s)$ with $d(1, \pi_i) \in D$. Then |R| divides $(\prod_{d \in D} d)^s$.

Proof. Consider the function $f: R \rightarrow \mathbb{C}$ defined by

$$f(\bar{\pi}) = \prod_{d \in D} \prod_{1 \le i \le s} (d - d(1, \pi_i)).$$

Clearly $f(\bar{\pi})$ is a product of generalized characters of R, whence a generalied character. Consequently, $(f(\bar{\pi}), 1_R)$ is an integer. However,

$$(f(\bar{\pi}), 1_R) = (\sum_{\bar{\pi} \in R} f(\bar{\pi}))/|R|$$
$$= f(1)/R$$
$$= (\sum_{\bar{x} \in R} d)^{S}/R,$$

since $f(\bar{\pi})=0$ for $\bar{\pi}\neq 1$.

A group realising equality in (8) is called *sharp*. Extending the usual notion of a geometric group in the case s=1 [2], M. Laurent (personal communication) made the following definition. A sharp group $R \leq S_n^s$ of type D is called *geometric* if, for all $l \geq 2$ and all $\bar{\varrho}_1, \ldots, \bar{\varrho}_l \in R$, $n-|F(\bar{\varrho}_1)\cap \ldots \cap F(\bar{\varrho}_l)| \in D$ holds. For convenience, we set $L = \{n-d: d \in D\} = \{l_0, \ldots, l_{t-1}\}$ with $l_0 < \ldots < l_{t-1}$. For $\bar{\varrho}_1, \ldots, \bar{\varrho}_l \in R$ with $\bar{\varrho}_i = (\varrho_i^{(1)}, \ldots, \varrho_i^{(s)})$, define $A(\bar{\varrho}_1 \cap \ldots \cap \bar{\varrho}_l) = \{(i, \varrho_1^{(1)}(i), \ldots, \varrho_1^{(s)}(i)): \bar{\varrho}_1(i) = \ldots = \bar{\varrho}_l(i)\}$, and let $\mathcal{A}_R = \{A(\bar{\varrho}_1 \cap \ldots \cap \bar{\varrho}_l): l \geq 1, \bar{\varrho}_1, \ldots, \bar{\varrho}_l \in R\}$. Then \mathcal{A}_R is obviously a meet semilattice in which all maximal sets have cardinality n. Now a sharp group $R \leq S_n^s$ is geometric if and only if \mathcal{A}_R is the family of flats of an injection design [7]; in other words, for $0 \leq i < t$ and every $A \in \mathcal{A}_R$ with $|A| = l_i$, and every $x \in X^s$ such that $A \cup \{x\}$ is injective, there is a unique $A' \in \mathcal{A}_R$ with $|A'| = l_{i+1}$ and $A \cup \{x\} \subseteq A'$. (We set $l_i = n$.)

Suppose that R is geometric. For every $\bar{\varrho} \in R$, the interval $\{A \in \mathcal{A}_R : A \subseteq A(\bar{\varrho})\}$ is the family of flats of a perfect matroid design (PMD, for short), and all these PMDs have the same projection onto the 0^{th} coordinate. Let \mathcal{M}_R be this common projection.

Theorem 2.5. Suppose that $R_i \leq S_n^{s_i}$ is a sharp group of type D for i=1, 2. Then $R_1 \times R_2 \leq S_n^{s_1+s_2}$ is sharp if and only if both R_1 and R_2 are geometric and $\mathcal{M}_{R_1} = \mathcal{M}_{R_2}$. In this case, $R_1 \times R_2$ is geometric as well.

Proof. Suppose that $R_1 \times R_2$ is sharp, and let T be the identity of this group. We apply induction on n, the case n=1 being trivial. For n>1, we distinguish two cases:

(a) $n \notin D$.

Set $l_0 = \min\{n-d: d \in D\}$, so $l_0 \ge 1$. Since R_i is sharp, we can find $\bar{\pi}_i \in R_i$ with $|A(\bar{\pi}_i \cap \bar{I}_i)| = l_0$ for i = 1, 2. We claim that $A(\bar{1} \cap (\bar{\pi}_1, \bar{I}_2)) = A(\bar{1} \cap (\bar{I}_1, \bar{\pi}_2))$, and moreover this set is contained in $A(\bar{\varrho}_i)$ for all $\bar{\varrho}_i \in R_i$, i = 1, 2. Indeed, $R_1 \times R_2$ has type D by assumption, so $|A(\bar{1} \cap (\bar{\varrho}_1, \bar{\varrho}_2))| \ge l_0$ for all $(\bar{\varrho}_1, \bar{\varrho}_2) \in R_1 \times R_2$.

has type D by assumption, so $|A(\overline{1} \cap (\overline{\varrho}_1, \overline{\varrho}_2))| \ge l_0$ for all $(\overline{\varrho}_1, \overline{\varrho}_2) \in R_1 \times R_2$. Thus we have an l_0 -element set $Y \subseteq X$ fixed pointwise by both R_1 and R_2 . Thus we may consider R_1 and R_2 as subgroups of $S_{n-l_0^{S_1}}$ and $S_{n-l_0^{S_2}}$ respectively, and the statement follows by induction. (b) $n \in D$.

For every $x \in X$, the stabilisers $R_i(x)$ are sharp of type $D \setminus \{n\}$. The stabiliser of x in $R_1 \times R_2$ is $R_1(x) \times R_2(x)$, and is also sharp. By induction, $R_1(x)$ and $R_2(x)$, are geometric and $\mathcal{M}_{R_1(x)} = \mathcal{M}_{R_2(x)}$. The result follows.

The converse, and the final assertion, are checked easily.

The existence question for geometric groups with specified type reduces to the case s=1, in view of the following result.

Theorem 2.6. A geometric subgroup of S_n^s of type D exists for some value of s if and only if such a group exists for s=1.

Proof. If $P \le S_n$ is geometric of type D, then so is $P^s \le S_m^s$, by Theorem 2.5.

Conversely, suppose that $G \subseteq S_n^s$ is geometric of type D, and let $\mathcal{M} = \mathcal{M}_G$ be the matroid supporting G; that is, for any $\overline{\pi}_1, ..., \overline{\pi}_l \in G$, $F(\overline{\pi}_1) \cap ... \cap F(\overline{\pi}_l)$ is a flat of \mathcal{M} , and every flat of \mathcal{M} is of this form. The number of (ordered) bases of \mathcal{M} is $\prod_{d \in D} d$; so |G| is the number of s-tuples of bases. It follows by an easy induction from the definition of an injection geometry that, if $\beta_0, ..., \beta_s$ are bases, there is a unique $\overline{\pi} = (\pi_1, ..., \pi_s) \in G$ with $\pi_i(\beta_0) = \beta_i$ for i = 1, ..., s. Hence, in the action of G on $(X^t)^s$, where t = |D|, the orbit of $(\beta_0, ..., \beta_0)$ contains $(\beta_1, ..., \beta_s)$. Consideration of order shows that this orbit consists precisely of all s-tuples of bases.

It follows that, for any $\bar{\pi} = (\pi_1, ..., \pi_s) \in G$ and any basis β of \mathcal{M} , $\pi_i(\beta)$ is a basis for i=1, ..., s. Since \mathcal{M} is determined by its bases, all projections of G consist of automorphisms of \mathcal{M} .

Now let β be a basis, and set $P = \{\pi \in S_n : \exists \overline{\pi} = (\pi_1, ..., \pi_s) \in G \text{ with } \pi_1 = \pi \text{ and } \pi_i(\beta) = \beta \text{ for } i > 1\}$. Then $P \leq \text{Aut}(\mathcal{M})$, and P is sharply transitive on bases of \mathcal{M} . If γ is an independent set contained in β , and $\pi \in P$ fixes γ , then $\gamma \subseteq \bigcap_{1 \leq i \leq s} F(\pi_i)$; since the set on the right is a flat, we have

$$\langle \gamma \rangle \subseteq \bigcap_{1 \leq i \leq r} F(\pi_i),$$

and so $\pi = \pi_1$ fixes $\langle \gamma \rangle$ pointwise. By transitivity, the fixed point set of any element of P is a flat, and so P is geometric with $\mathcal{M}_P = \mathcal{M}$.

We remark that T. Maund (personal communication) has completed the determination of pairs (n, D) for which geometric groups exist.

Theorem 2.6 does not assert that G is the direct product of its projections, nor that the projections are geometric. The following examples show that this can fail.

Example 2.7. (a) $(D = \{n\})$. A geometric group of type $\{n\}$, with s = 2, is simply a group G of order n^2 with two subgroups H_1 , H_2 of order n such that $H_1 \cap H_2 = \{1\}$; we embed G in S_n^2 by means of its permutation representations on the cosets of H_1

and H_2 . Let P be any group of order n,

$$G = P \times P$$
, $H_1 = \{(1, \pi) : \pi \in P\}$, and $H_2 = \{(\pi, \pi) : \pi \in P\}$.

Then the above conditions hold; but, if P is non-abelian, then H_2 is not a normal subgroup of G, and so G is not the direct product of two regular groups. Moreover, if P admits a fixedpoint-free automorphism θ , then take instead $H_1 = \{(\pi, \theta(\pi)): \pi \in P\}$, H_2 as before, to obtain an example where neither projection is regular. We can extend this to an arbitrary $s \ge 2$ by choosing, for example, $G = P^s$, and

$$\begin{split} H_1 &= \{(\pi_1, \, ..., \, \pi_s) \in P^S \colon \, \pi_2 = \theta(\pi_1)\} \quad \text{and} \\ H_i &= \{(\pi_1, \, ..., \, \pi_s) \in P^S \colon \, \pi_i = \pi_{i-1}\} \quad \text{for} \quad i > 1. \end{split}$$

(b) $(D = \{n-2, n-1, n\}.)$ Let us consider the 3-transitive permutation group PGL (2, 9). It contains two sharply 3-transitive subgroups of order 2, namely PGL (2, 9) and M_{10} ; theis intersection is PSL (2, 9), which has index 2 in each of them. Let $\alpha \in PGL$ (2, 9) PSL (2, 9) and $\beta \in M_{10} \setminus PSL$ (2, 9). Consider the following subgroup of the direct product PGL (2, 9) $\times PGL$ (2, 9):

$$G = \langle PSL(2, 9) \times PSL(2, 9), (\alpha, \beta), (\beta, \alpha\beta) \rangle.$$

It is not hard to see that G is sharply 3-transitive on $\{1, ..., 10\}^2$ but is not a direct product (even as an abstract group). This example can easily be generalised, both replacing 9 by q^2 for any odd prime power q, and replacing the number of factors by any $s \ge 2$. (The example given depends on the fact that the matrix $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ over GF (2) has irreducible characteristic polynomial and so acts indecomposably on GF (2)². Replace it with a matrix of order s having the same property.)

In spite of this example, there are situations in which we can show that sharp groups must be direct products.

Theorem 2.8. Suppose that $G \leq S_n^s$ is sharply t-transitive. Assume that either

- (a) no sharply t-transitive group of degree n has a nontrivial permutation representation of degree n-t or smaller; or
- (b) no proper supergroup of a sharply t-transitive group of degree n has order dividing $(n(n-1)...(n-t+1))^s$. Then G is the direct product of its projections.

Proof. As in the proof of Theorem 2.6, for each j with $1 \le j \le s$, consider the group $H_j = \{(\pi_1, ..., \pi_s) \in G: \pi_l(i) = i \text{ for } 1 \le i \le t, \ 1 \le l \le s, \ l \ne j\}$. Clearly $\varphi_j(H_j)$ is sharply t-transitive, where φ_j is the jth projection.

If hypothesis (a) holds, then H_j has no non-trivial representation of degree less than n-t+1, so $\varphi_l(H_j)=1$ for all $l\neq j$. Thus the subgroup of G generated by $H_1, ..., H_s$ is simply their direct product, and is equal to G (comparing orders).

If hypothesis (b) holds, then $\varphi_j(G) = H_j$, so G is a subdirect product of $H_1, ..., H_s$, again their direct product (by comparing orders).

Corollary 2.9. Suppose that $G \leq S_n^s$ is sharply t-transitive. Then G is the direct product of its projections in each of the following cases:

- (a) $t \ge 4$;
- (b) t = 3, $n \ odd$;
- (c) t=1 or 2, n prime.

Proof. If t=n-1, then $|G|=(n!)^s$ and consequently $G=S_n^s$.

In the remaining cases of (a) or (b), hypothesis (a) of Theorem 2.8 holds —

the possible sharply t-transitive groups are A_n , M_{12} , M_{11} or PSL (2, n-1). In case (c) with t=1, hypothesis (a) holds trivially. In case (c) with t=2, the only sharply 2-transitive group is AGL(1, n). A theorem of Wielandt ([12], Theorem 27.1) shows that a proper supergroup is 3-transitive and has order divisible by n-2, hence not dividing $(n(n-1))^s$.

We conclude with some further conditions which ensure that the bound (8) holds and is met only in injection designs.

Theorem 2.10. Suppose that \mathcal{A} is a set of diagonals in X^{s+1} with $s \ge n+2$. Suppose further that, for all $A, A' \in \mathcal{A}$ with $A \neq A'$, we have $|A \cap A'| \in D$. Then $|\mathcal{A}| \leq (\prod_{d \in D} d)^s$. Moreover, equality holds if and only if \mathcal{A} is an injection design of type D.

Proof. We use the notation $\mathscr{A}(B) = \{A \setminus B : B \subseteq A \in \mathscr{A}\}\$ for a set $B \subseteq X$. We use induction on n+|D|. The case $D=\emptyset$ is trivial, so we may suppose that $|D| \ge 1$. Actually, even the case |D|=1 follows from a theorem of Deza [4], but we shall not use this fact. We distinguish two cases: (a) $n \notin D$.

Set $l=\min\{n-d: d\in D\}$. Let $A_1, ..., A_q$ be a maximal collection of members of $\mathscr A$ forming a *sunflower* with kernel of size l, that is, for some l-element set B one has $A_i \cap A_j = B$ for $1 \le i < j \le q$. We may suppose that $q \ge 2$. If q > n - l + 1 then for all $A \in \mathcal{A}$ we have |A| = n and $|A \cap A_i| \ge l$, whence $B \subseteq A$ holds. In this case, the statement follows from the induction hypothesis applied to $\mathcal{A}(B)$. From now on, suppose that $q \le n-l+1$. The maximality of q implies that

$$A \cap \left(\bigcup_{i=1}^{q} (A_i \setminus B)\right) \neq \emptyset$$

for all $A \in \mathcal{A}$ with $B \subseteq A$. This, in turn, implies that

$$|\mathscr{A}(B)| \leq q(n-l)m(n-l-1, D \setminus \{n-l\}, S_n).$$

Hence, by the induction hypothesis,

$$|\mathscr{A}(B)| \leq q \prod_{d \in D} d^{S}/(n-l)^{S-1}.$$

Now

$$|A \cap A_1| \ge l$$
 for all $A \in \mathscr{A}$.

Using

$$\binom{n}{l} = \binom{n}{n-l} < n^{n-l}/(n-l)! < (ne/(n-l))^{n-l},$$

we infer

(9)
$$|A| \leq \left(\binom{n}{l}q/(n-l)^{h-1} \prod_{d \in D} d^{S} < \prod_{d \in D} d^{S}\right) (ne/(n-l))^{n-1} n/(n-l)^{S-1}.$$

Substituting $k=n-l\ge 2$ and using n< s we obtain that, if k>2, then $n^{k+1}e^k/k^{n+k+1}=(n^{k+1})/(k^{n+1})\cdot (e/k)^k<1$ as $n\ge k$, and the result holds. If k=2 it

follows directly from the first part of (9), since $\left(\frac{n}{2}\right) 3/2^{e-1} < 1$ for $n \ge 1$.

(b) $n \in D$.

Let y be any element of X^{s+1} . Then, by induction, $|\mathscr{A}(y)| \leq \prod_{d \in D \setminus \{n\}} d^s$ holds. This yields

$$|\mathcal{A}| = \sum_{y \in X} |\mathcal{A}(y)|/n \le n^{S} \prod_{d \in D \setminus \{n\}} d^{S} = \prod_{d \in D} d^{S},$$

as desired. If \mathscr{A} attains the bound, then so does $\mathscr{A}(y)$ for all $y \in X^s$; then, by induction, $\mathscr{A}(y)$ is an injection design, and the same is true for \mathscr{A} .

The bound $s \ge n+2$ is probably too crude; it would be desirable to have better bounds. In the particular case $D = \{2, 3, ..., n-t\}$ and $n \ge n_0(t)$, we show in Theorem 2.12 below that $s \ge 2$ is sufficient. (We mentioned earlier the conjecture from [6] that the result holds for s=1 too.)

Let us recall the "s-version" of Corollary 1.9.

Corollary 2.11. Suppose that $R \subseteq S_n^s$ and R contains no r+1 pairwise disjoint diagonal sets, where $r \subseteq n^s$. Then $|R| \subseteq r((n-1)!)^s$.

We use this result in the proof of the following.

Theorem 2.12. Suppose that $s \ge 2$, $n \ge n_0(t)$, and $F \subseteq S_n^s$ satisfies $|A(f) \cap A(f')| \ge t$ for all $f, f' \in F$. Then

$$|F| \leq ((n-t)!)^{S}$$

with equality holding if and only if $F = \{ f \in S_n^s : B \subseteq A(f) \}$ for some injective t-element subset B of S_n^{s+1} .

Proof. Suppose first that, for some *t*-element injective set *B* one has $|F(B)| > (n-t)((n-t-1)!)^s$ where F(B) is as defined in the proof of Theorem 2.8. By Corollary 2.11, there exist n-t+1 pairwise disjoint sets in F(B), each contained in $(X \setminus B)^{s+1}$.

We claim that $B \subseteq A(f)$ for all $f \in F$. Indeed, if $A(f) \supseteq B$, then A(f) must intersect each of the n-t+1 pairwise disjoint sets in F(B), a contradiction since $|A(f) \cap (X \setminus B)^{s+1}| \le n-t$.

Since the number of $f \in S_n^s$ with $B \subseteq A(f)$ is $((n-t)!)^s$, the proof is complete in this case. Thus we may assume

(10)
$$|F(B)| \le (n-t)((n-t-1)!)^s$$
 for all t-element injective sets B.

Suppose that |F| is maximal. Then F must contain f_1 and f_2 with $|A(f_1) \cap A(f_2')| = t$ or t+1. We treat only the first case; the second is similar and somewhat simpler.

Set $B=A(f_1)\cap A(f_2)$ and $G_i=A(f_i)\setminus B$ for i=1,2. Let us classify the sets $A\in \mathcal{A}=\{A(f): f\in F\}$ according to their intersections $A\cap B$, $A\cap G_1$ and $A\cap G_2$. Since $|A\cap A'|\geq t$ for $A,A'\in \mathcal{A}$, it follows that

$$(11) |A \cap A(f_i)| = |A \cap B| + |A \cap G_i| \ge t$$

for i=1, 2. We distinguish two cases:

(a) there exist an integer b with $0 \le b \le t$ and subsets $B_0 \subseteq B$, $C_i \subseteq G_i$, with $|B_0| = b$, $|C_i| = t - b$ (for i = 1, 2), so that

$$|\mathscr{A}(B_0 \cup C_1 \cup C_2)| > (n-t-b)((n-t-b-1)!).$$

Using Corollary 2.11 and the same argument as above, we infer that $|A \cap H| \ge t$ for all $A \in \mathcal{A}$, where $H = B_0 \cup C_1 \cup C_2$ (so that |H| = b + t). This implies that

$$|\mathcal{A}| \leq \sum_{E \in {H \choose t}} |\mathcal{A}(E)| \leq {b+t \choose t} (n-t) ((n-t-1)!)^{S} \leq \left({2t \choose t} / (n-t)^{s-1}\right) ((n-t)!)^{S} < ((n-t)!)^{S}$$

for $n > t + {\binom{2i}{t}}^{1/(s-1)}$

(b) $|\mathscr{A}(B_0 \cup C_1 \cup C_2)| \le (n-t-b)((n-t-b-1)!)^s$ for all b and all b-subsets B_0 of B and (t-b)-subsets C_i of G_i , i=1, 2.

Using (11), we obtain

$$|\mathcal{A}| \leq \sum_{b=0}^{t} \sum_{B_{0} \in \binom{B}{tb}} \sum_{C_{1} \in \binom{G_{1}}{b}} \sum_{C_{2} \in \binom{G_{2}}{b}} |\mathcal{A}(B_{0} \cup C_{1} \cup C_{2})| \leq$$

$$\leq \sum_{b=0}^{t} \binom{t}{b} \binom{n-t}{b}^{2} (n-t-b) ((n-t-b-1)!)^{s} =$$

$$= \sum_{b=0}^{t} \frac{t!}{b!^{3}} ((n-t)(n-t-1) \dots (n-t-b))^{2-s} (n-t-b)^{-1} ((n-t)!)^{s}.$$

Since $s \ge 2$, 2-s is non-positive. Using the fact that $\sum_{b \ge 0} (1/b!)^3 < e$, we see that the right-hand side does not exceed $((n-t)!)^s \cdot et!/(n-2t)$, which is smaller than $((n-t)!)^s$ for n>2t+et!.

References

- [1] H. F. BLICHFELDT, A theorem concerning the invariants of linear homogeneous groups, with some applications to substitution-groups, Trans. Amer. Math. Soc. 5 (1904), 461-466.
- [2] P. J. CAMERON, and M. DEZA On permutation geometries, J. London Math. Soc. 20 (1979),
- [3] P. J. CAMERON, M. DEZA and P. FRANKL, Sharp sets of permutations, J. Algebra, to appear.
- [4] M. Deza, Solution d'une problème de Erdős et Lovász, J. Combinatorial Theory (B), 16 (1974),
- [5] M. DEZA, P. ERDŐS and P. FRANKL, On intersection properties of systems of finite sets, Proc. London Math. Soc. 36 (1978), 369-384.

- [6] M. DEZA and P. FRANKL, Injection geometries, J. Combinatorial Theory (B), 37 (1984), 31—40. [7] M. DEZA and P. FRANKL, Squashed designs, J. Discr. Comput. Geom., to appear. [8] P. ERDÓS, A problem on independent r-tuples, Ann. Univ. Sci. Budapest, 8 (1965), 93—95. [9] P. ERDÓS, C. KO and P. RADÓ, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford, 12 (1961), 313-320.
- [10] M. KIYOTA, An inequality for finite permutation groups, J. Combinatorial Theory (A), 27 (1979), 119.

- [11] M. E. O'NAN, Sharply 2-transitive of permutations, Proceedings of the Rutgers Group Theory Year 1983—198 (ed. M. Aschbacher et al.), 63—67, Cambridge Univ. Press, Cambridge, 1985.
- [12] H. WIELANDT, Finite Permutation Groups, Acad. Pr., New York, 1964.

P. J. Cameron

M. Deza and P. Frankl

School of Mathematical Sciences Queen Mary College London El 4NS, U.K.

C.N.R.S., Université Paris VII, 75005 Paris France